If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+32x+12=0
a = 10; b = 32; c = +12;
Δ = b2-4ac
Δ = 322-4·10·12
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{34}}{2*10}=\frac{-32-4\sqrt{34}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{34}}{2*10}=\frac{-32+4\sqrt{34}}{20} $
| (8x/2)-x=6x+4 | | x=(2x+8)^(1/2) | | 8z-22=3(3z+11)6z | | 3x(x-1)-2(x+3)(x+5)=x2-2x+1 | | 5/6y+3/4y=4 | | (w+5)-(8w-7)=-6w+2 | | |8x-9/4|=7 | | 4/5b+3=1/5b+6 | | 5c+2(6c+4)=229 | | 131+7x-7=180 | | 6=t^2-10t+30 | | 1/3x-3=-x+1 | | 8x-2(2-x)=9 | | 50=x-(14) | | y/10-4=1 | | 3(8r-7)=-(6r-9) | | 20r^2=13r+15 | | 7(22+4)=x | | 3x/7+2=20 | | 12-6x=4x-2 | | 3x+45-45=60-453x= | | -6+3x=2- | | 95=2x+3x | | 16y^2=80 | | q+14=6q | | 8+5(x-5)=3-9(x-9) | | y+5=-8y+5 | | x+7(x+4)=180 | | 6w^2=11w+35 | | 20+6x-2+90=180 | | 3(x-5)=4(7-10) | | 40+2x+30+40=180 |